ICSQ’97 International Conference on Software Quality
Maribor, November 18, 1997

How much does software quality cost?

Karol Frühauf, INFOGEM AG, CH-5401 Baden

Cost of software quality

Cost of quality for the supplier:

Is the purchaser ready to pay that?
How does the purchaser see it?

![Chart showing development and enhancement expenses and value over time.](chart)

QLK-1.30

What can the supplier do?

→ either increase the value for the same price provide
 ♦ more useful functionality in the same time frame
 ♦ the same functionality in less time

→ or decrease the expenses for a lower price provide
 ♦ in the same time the same value, i.e. decrease the cost of development
How can the supplier achieve it?

speed up development
→ increase efficiency
→ do more simultaneously
→ do less

decrease cost of development
→ increase efficiency
→ do it with cheaper resources
→ do less

efficiency = output / time
resources from Slovenia
simultaneous defect detection

less work to do
topic for defect removal strategy

What type of work can be omitted?

requirements specification
design specifications
coding

user documentation
configuration management
project management

requirements review
design reviews
code reviews
unit testing
integration testing
system testing
documentation review

requirements repair
design repair
code repair
requirements & design & code repair
documentation repair
Universal laws of repair avoidance

1. don’t make mistakes
2. if it so happens that you can’t avoid mistakes then do your best to detect the defects you produced
3. repair the defects applying rule 1

<table>
<thead>
<tr>
<th>approach</th>
<th>defect detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>justification</td>
<td>it prevents propagation of defects (if they are repaired)</td>
</tr>
<tr>
<td>the only thing is</td>
<td>it’s not for free</td>
</tr>
</tbody>
</table>

How much might defect detection cost?

Cost of Poor Quality

Cost of Detection

Cost of Repair

minimal

100% Defects

optimal

0% Defects
Where is the optimum?

"Interestingly, a cumulative defect removal efficiency of 95% appears to be a powerful nodal point for software projects. Projects which achieve overall removal efficiencies approximating or exceeding 95% tend to be optimal in three other aspects as well:

1. they have the shortest schedule for projects of their size and type
2. they have the lowest quantity of effort in terms of person-months
3. they have the highest levels of user satisfaction after release."

Capers Jones, Applied Software Measurement, p. 166-167

Effectiveness of defect detection techniques

Capers Jones: Applied Software Measurement, p. 278
Yes, but reviews are expensive, aren’t they?

And how is it with the cost of repair?
It looks like reviews are really efficient

Indeed, they are!

<table>
<thead>
<tr>
<th>Reviews</th>
<th>Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of Defect Detection</td>
<td>1 : 1.5 .. 2</td>
</tr>
<tr>
<td>Cost of Repair</td>
<td>1 : 1 .. 5 (at least)</td>
</tr>
<tr>
<td>Defect Detection Effectiveness</td>
<td>1.5 .. 2 : 1</td>
</tr>
</tbody>
</table>

Traditional way of doing things

- **Effectiveness:**
 - 30%
 - 70%
 - 80%
- **# of Defects:**
 - 1200
- **Detection / FP:**
 - 0.25 h
 - 1.25 h
 - -
- **Detection Cost:**
 - 8'000
 - 40'000
 - -
- **Repair / Defect:**
 - 1 h
 - 3 h
 - 6 h
- **Repair Cost:**
 - 40'000
 - 168'000
 - 115'200
- **Cost of Poor Quality:**
 - 48'000
 - 216'000
 - 115'200
A better way to do it

Effectiveness:

<table>
<thead>
<tr>
<th>Effectiveness</th>
<th>70%</th>
<th>50%</th>
<th>80%</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Defects</td>
<td>1200</td>
<td>360</td>
<td>180</td>
</tr>
<tr>
<td>320 FP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 Euro / Hour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detection / FP</td>
<td>0.75 h</td>
<td>1.25 h</td>
<td>0 h</td>
</tr>
<tr>
<td>Detection Cost</td>
<td>24'000</td>
<td>40'000</td>
<td>0</td>
</tr>
<tr>
<td>Repair / Defect</td>
<td>1 h</td>
<td>3 h</td>
<td>6 h</td>
</tr>
<tr>
<td>Repair Cost</td>
<td>84'000</td>
<td>54'000</td>
<td>86'400</td>
</tr>
<tr>
<td>Cost of Poor Quality</td>
<td>108'000</td>
<td>94'000</td>
<td>86'400</td>
</tr>
</tbody>
</table>

Net result

<table>
<thead>
<tr>
<th></th>
<th>traditional</th>
<th>a bit better</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defects Detected in Reviews</td>
<td>30 %</td>
<td>70 %</td>
</tr>
<tr>
<td>Defects Detected in Tests</td>
<td>70 %</td>
<td>50 %</td>
</tr>
<tr>
<td>Defects Detected Before Delivery</td>
<td>80 %</td>
<td>85 %</td>
</tr>
<tr>
<td>Defects Detected in First Year Maintenance</td>
<td>80 %</td>
<td>80 %</td>
</tr>
<tr>
<td>Cost of Defect Detection</td>
<td>48 kEuro</td>
<td>64 kEuro</td>
</tr>
<tr>
<td>Cost of Repair Before Delivery</td>
<td>208 kEuro</td>
<td>138 kEuro</td>
</tr>
<tr>
<td>Cost of Maintenance (Repair only)</td>
<td>115 kEuro</td>
<td>86 kEuro</td>
</tr>
<tr>
<td>Cost of Poor Quality</td>
<td>371 kEuro</td>
<td>278 kEuro</td>
</tr>
</tbody>
</table>

Change in Cost of Poor Quality - 25 %
Conclusions

1. Quality costs 100% or 0% (it depends on your point of view)
2. What really matters is the cost of poor quality
3. Key figures for project controlling (among others):
 - defect removal efficiency before delivery =
 \[
 \frac{\text{cost of defect detection and repair before delivery}}{\# \text{ of defects removed before delivery}}
 \]
 - defect detection effectiveness before test =
 \[
 \frac{\# \text{ of defects detected in reviews}}{\# \text{ of defects detected in reviews and tests}}
 \]