
Copyright 2002 INFOGEM AG

CHX-PG.10

Helsinki, September 23, 2002

Opportunities and pitfalls
in using extreme Programming

Karol Frühauf
INFOGEM AG, CH-5401 Baden, Switzerland

Secretary of the EOQ Software Group
Karol.Fruehauf@ACM.ORG

Copyright 2002 INFOGEM AG

CHX-PG.20

Contents

� Opportunities of XP
� Traps of XP
� Pitfalls in using XP
� Conclusions



Copyright 2002 INFOGEM AG

CHX-OP.10

Opportunities of XP

here is quality o.k.
1. strong focus on quality
2. plan and design to cost
3. clear allocation of responsibilities
4. designed to cope with change
5. quick feedback on all levels

Copyright 2002 INFOGEM AG

CHX-OP.20

Opportunity 1: Strong focus on Quality

� longing for pride by the
craftsman acknowledged
"internal quality" as
measured by
programmers

Ö not negotiable
� get rid of customer's fear

to decide what he wants
external quality as
measured by customers

Ö negotiable



Copyright 2002 INFOGEM AG

CHX-OP.30

Opportunity 2: Plan and design to cost

� resources are given,
iteration (and release)
schedule is defined,
"internal quality" is not
negotiable

Ö scope is negotiated
� decompose stories into

small tasks you can
estimate, measure your
productivity

Ö get quickly faster and
reliable in estimating

Copyright 2002 INFOGEM AG

CHX-OP.40

Opportunity 3: Clear allocation of responsibilities

� customer has the duty to
say what he wants and is
responsible for the fitness
for use of the product

Ö defines scope as stories
� supplier has the duty to

provide estimates and is
responsible for the
accuracy of the price

Ö defines the (not
negotiable) price

quality for the king
customer



Copyright 2002 INFOGEM AG

CHX-OP.50

Opportunity 4: Designed to cope with change

� it accepts requirements
change as law of nature
customer has the right to
change his mind, any time

Ö if he accepts the cost
� it justifies change of the

solution if it fails to satisfy
the needs
supplier has the right to
update his estimates

Ö if he is prepared and able
to learn

Copyright 2002 INFOGEM AG

CHX-OP.60

Opportunity 5: Quick feedback on all levels

requirements understanding define test before you code
questions regarding requirements on-site customer
correctness of the evolving
solution

pair programming

maintainability of the code pair programming
correctness of the code automated unit testing
programming progress automated unit testing
iteration progress daily stand-up meeting,

continuous integration
technology questions pair programming,

daily stand-up meeting,
XP room

need for change on-site customer, XP room



Copyright 2002 INFOGEM AG

CHX-TR.10

Traps of XP

1. XP covers only software development
2. XP covers software development completely
3. XP needs extremely good programmer

Copyright 2002 INFOGEM AG

CHX-TR.20

Trap 1: XP covers only software development

Preparation

Requirements,
Features,
(Stories)

Architecture,
Technology

Development in iterations

Story
Estimation

Prototype,
Spike Solution

Programming,
Test

New Story Story
Refinement

Deployment

Roll-OutAcceptance
Test

Planning
Game



Copyright 2002 INFOGEM AG

CHX-TR.30

Consequences of Trap 1

� How do you cope with business analysis? What story is it?
� How does the customer budget the project?
� How does the supplier estimate the cost?
� How does a contract looks like?
� How does the software get distributed, installed, started up and

operated?
� How does problem management work once the system is up and

used?
Is customer or acceptance tester or planner or a programmer
addressed by help desk?
Are problems stories?
Is there something like a patch?

Ö it looks similar to maintenance but is not

Copyright 2002 INFOGEM AG

CHX-TR.40

Trap 2: XP covers software development completely

project management

configuration
management

software
development

verification
and validation

planning game small releases

refactoring
simple design

pair
programming

collective
ownership

continuous
integration

40 hours week
on-site customercoding rulesstand-up meeting

on-site
customer

pair
programming

acceptance
testing

unit testing



Copyright 2002 INFOGEM AG

CHX-TR.50

Consequences of Trap 2

How are the dependencies to other systems made visible? Are (dying)
stories the right thing for that?
How is the product integrated with other products?
How do you recover requirements from test cases and programs?
How do you define test completeness without updated stories?
Why bother tracing test cases to stories if they get destroyed?
How do you track overall progress with no estimates for the not
planned and not invented yet stories?

Copyright 2002 INFOGEM AG

CHX-TR.60

Trap 3: XP requires extremely good programmer

"you need good people"
– for good people any method is suitable or

good people make choose always the adequate method
– where do you get up to ten good people?
Ö good prerequisite is to have persons in team
+ with the same or very similar educational background
+ with roughly the same communicational skills
+ possessing identical degree of egoless behaviour
+ with similar attitude concerning discipline



Copyright 2002 INFOGEM AG

CHX-PI.10

Pitfalls – a discussion

the following slides sketch a case study
→ I would like to discuss with you the suitability of the XP approach

for this case

Ö Where can you justifiably expect pitfalls?
Ö Where do you think XP will work?

Copyright 2002 INFOGEM AG

CHX-PI.20

Case study (1)

in-house project 9999++
goal

replace existing individual solution by a standard ERP solution
because the maintenance contract can't be prolonged any more

time constraints
→ module HR operational 1.1.2003
→ modules FI and CO operational 1.7.2003 (start business year)
scope constraints
→ the current functionality of the system must be available
→ the requirements resulting from the Business Reengineering

project in the department PA have to be implemented
→ all other processes have to be implemented more robustly and

efficiently
→ the system must be adapted to accommodate the change of the

external interface to the governmental body XY



Copyright 2002 INFOGEM AG

CHX-PI.30

Case study (2)

technological constraints
� programming language: new
� operating system: new
� data base management system: new
� report generator: new
organisational constraints
� sponsor = member of the executive board
� on-site customer = no user can play the role of the
→ "customer project" 9999 plays the role
→ project leader 9999 = lead of the IT department
→ additional responsibility: co-ordinate the projects
� project steering board started 1.7.2002
� a number of other projects need to be synchronised but is not

involved
� basic services group delivers but is not integrated in the project

Copyright 2002 INFOGEM AG

CHX-PI.40

Case study (3)

Customer

Sponsor
Project

Steering
Board

User MA User PA

MA Pool PA Pool

Project DProject A Project B Project C

Inhouse Supplier



Copyright 2002 INFOGEM AG

CHX-PI.50

Case study (4)

� the projects started 1.7.2001 – they are projects in their own right
� the project team size varies between 1 and 5 persons
� an architecture project started 1.9.2000 and completed 1.9.2001

the technological foundation for the future solution
� no application architecture is defined
� the project 9999 started 1.4.2002
� every project has a defined scope and specifies its external

interfaces
� every project has two customers: project 9999 (which stories) and

a user representative (what is in the story)
� the group of projects 9999+ is technology driven – users don't

suffer enough with the current solution in order to take initiative

Copyright 2002 INFOGEM AG

CHX-PI.60

Case study (5)

common data base

application 1 application 2

project 9999

data base 1

application 1- application 2'

data base 2

application 11

project D

project Capplication 12

application 13

project A

project B

maint
team



Copyright 2002 INFOGEM AG

CHX-PI.70

Case study (6)

methodological constraints
� in the software development use of XP is mandatory
� this is the first set of projects using XP
� not all XP practices are introduced yet

– iteration planning games are used extensively
– no stand-up meetings
– pair programming rarely applied
– automated unit testing
– continuous integration with nightly build without built in unit tests
– iterations are not usable in production (yet)

� no acceptance tester, no acceptance test of iterations
� project customising the standard ERP product follows own method
� general project planning and controlling mechanisms have to be

used

Copyright 2002 INFOGEM AG

CHX-CO.10

Conclusions

Did our
software
development
method apple

fall down already?
Do we still ponder?

Or did somebody
even discover
already the

gravitation law
of the

software
development
methodology?

Do you know him?
Do you know the
law?



Copyright 2002 INFOGEM AG

CHX-CO.20

Effects of process anorexia

+ shorter time to usable results
+ loss of complexity (by gaining simplicity)
+ shorter (and less expensive) defect removal loops
+ less work products in need of configuration and change
+ gain in productivity
+ gain in continuous product improvement
� amalgamation of maintenance and development
– shorter product perspective
– loss of independence from product information storage resources
– loss of product correctness visibility
– loss of stability in the user environment

Copyright 2002 INFOGEM AG

CHX-CO.30

Conclusions

� there is neither a heavy weight / robust nor a light weight / agile
silver bullet

� the method needs to satisfy the requirements on the process
(results)

� it is easier to fit the methodology to people than the other way
around

� the vision and spirit of the methodology is what counts, not the
details

� many successful projects employed a coach in order to avoid ...


