Andras Pataricza Managing Software-Quality Engineering Success

The Perfectly Designed Chaos - or
How Can We Stop the Running Amok of an
Imperfect Software on a Faulty Hardware

Andras Pataricza, Technical University Budapest, Hungary
Andprds Pataricza is associate professor for Computer Science at the Technical

University in Budapest. His research interests are in fault-tolerant systems. In
this area he cooperates with researchers at Universities in Germany and France.

January 27, 1997 page 1

Managing Software-Quality Engineering Success Andras Pataricza

January 27, 1997 INFOGEM Conference A. Pataricza

The Perfectly Designed Chaos
or
How Can We STOP

the Amok Run of an Imperfect Software on a Faulty Hardware

Andras Pataricza
Technical University of Budapest
H-1502 Budapest
E-mail: pataric@mmt.bme.hu
Web: www.mmt.bme.hu/~pataric

The perfectly designed chaosThe Perfectly Designed Chaos or How Can We STOP the Amok Run of an Imperfect Software
©umapal el frmi

January 27, 1997 INFOGEM Conference A. Pataricza

Paradox approaches:

The designer offers: Quality of product (?)
The user wants:Quality of services

Service

The perfectly designed chaos Paradox approaches: 2

page 2 January 27, 1997

Andras Pataricza Managing Software-Quality Engineering Success

January 27, 1997 INFOGEM Conference A. Pataricza

Importance of Dependability:

Is the story of computer applications
a SUCCESS or a HORROR story?

Some NEGATIVE experiences collected from a very long list:
« USA: approximately 4 billion $/year damage/year

e Several accidents:
- radiation therapy
- airplane
- Ariane 5

» Collapse of stock exchange, phone and banking systems

* Administration:
- invoice on autopsy (vivisection?)

e Internet

The perfectly designed chaos Importance of Dependability: 3
© umen\oelancuarcal fmk

January 27, 1997 INFOGEM Conference A. Pataricza

Dependability

“The thrustworthyness of a computer system such that
reliance can be justifiably placed on the services it delivers”
(IFIP WG 10.4 / Laprie)

Fault —=>Error —>Failure

Service

Failure

: R — .i- Murphy

Product

The perfectly designed chaos Dependability 4

R L TR

January 27, 1997 page 3

Managing Software-Quality Engineering Success

Andras Pataricza

January 27, 1997 INFOGEM Conference A. Pataricza
Means for dependability
Phase Fault handling Implementation | Target
. Design &
_ Prevention Avoidance | manufacturing
Before service (= no faults, technology Fault
please)
Removal Testing
Robustness:. LR
oy T L e : - <3 ?
(=Russianroulette) ; Sg!f, confidence: ?
Redundancy
Tolerance - time
: g (= proper service in spite of - performance | Failure
During service faults) - hardware
-information
Forecasting -agattfsiti Fault
(= be readyfor faults) prg dilctio?1n -
The perfectly designed chaos Means for dependability 5
January 27, 1997 INFOGEM Conference A. Pataricza

IEC 1069-5

Dependability attributes

* Reliability. correct operation for a defined period of time

* Availability. ability in a correct operational state for a defined period of time

* Safety: avoidance of catastrophes

* Security: assurance to withstand unauthorized/ incorrect inputs

Recognition/signalization of correct/ incorrect system state

Credibility:

page 4

The perfectly designed chaos

Dependability attributes

January 27, 1997

Andras Pataricza Managing Software-Quality Engineering Success

January 27, 1997 INFOGEM Conference A. Pataricza

Hardware implementation

(Mono)computer level

Master/
Checker

Parity/
Replicated bus

Watch-dog Replicated
processor /O
The perfectly designed chaos Hardware implementation 7
© e et el Imb.
January 27, 1997 INFOGEM Conference A. Pataricza

Standard solutions
CPU-MMU
* lllegal opcode
* Arithmetic errors
* Bus error

* Memory address range access rights (fetch, read, read/write) checks
only task level = no fine granular checks
(the entire address range of a task is uniformly mapped)

» Similar object/function oriented implementation,
like index checks not (really) supported
(need for user - supervisor - user mode context switching + MMU prg.)

* Fault tolerance/ latency?

e Supervisor mode unprotected

The perfectly designed chaos Standard solutions B8

January 27, 1997 page 5

Managing Software-Quality Engineering Success

January 27, 1997 INFOGEM Conference

Andras Pataricza

A. Pataricza

Master-checker

* Two processors connected pin-by-pin on the bus running
the same application

* Lock-step operation
* Comparison of the values at each signal write operation

* 100% fault coverage for CPU-internal single errors, but
0% fault coverage for CPU-external errors

* Hardware overhead: 1 chip???/ 100%???
* No performance loss
* Integrated comparators: e.g. Intel 585.995

« Similar principle at the higher levels of HW:
Sun Sparc High Availability server,...

The perfectly designed chaos Master-checker 9
Clamen'patanciiarcs) fm

January 27, 1997 INFOGEM Conference A. Pataricza

Watch-dog processor

» Simple co-processor checking the control-flow of the application program

Signatures (numerical labels) assigned to the (high-level) instructions

at precompile time
Watchdog
processor

Syntactic check of the label sequence but: no data dependencies
E.g.: IF-THEN-ELSE:
both THEN branch and ELSE branch accepted
selection unchecked

Signatures transferred to the WDP at run time

v Signature transfer

Alarm signal

page 6

The perfectly designed chaos Watch-dog processor 10

January 27, 1997

Andras Pataricza Managing Software-Quality Engineering Success

January 27, 1997 INFOGEM Conference A. Pataricza

7]
8]n1]s]

Control graph extraction:
Control graph encoding

16,6);

Watchdog
preprocessor

- i e

SEND(3,3,3);
H|
ND(6

| stat2;)
statl;

I statl;)

stat2;}
SEND({4,7,4);}

SEND(8,11,8);

for (i=0; i<MAX; i++) {
SEN

SEND(2,5,2);

if (a>b) {

}

| for (i=0; i<MAX; i++) |

Lif (a>h) {
else {

procedure() {
SEND(1,10,1);

procedure() {

1}
}

Statement level checking:

,
\

q
\.

The perfectly designed chaos Watch-dog processor 11

January 27, 1997 INFOGEM Conference A. Pataricza

Evaluation of WDP

* 60-80% coverage for control faults, assures the execution of data checks

e 10-20% performance loss
e Short error latency vs. communication ba(n)dwith

* SW implementation possible
but reasonable only if the WDP runs on another processor
SMP, or distributed

» Check of multitasking (process synchronization) possible (CSP-like)

* No COTS support till yet, but low complexity

The perfectly designed chaos Evaluation of WDP 12

January 27, 1997 page 7

Managing Software-Quality Engineering Success Andras Pataricza

January 27, 1997 INFOGEM Conference A. Pataricza

Summary

e Trend: COTS solutions
economical solutions: dedicated CPU MIPS/ COTS MIPS = 10°

e Only partial solutions offered as products by equipment vendors
no fault tolerant bus standard in the traditional COTS products —>add-on

cosT EXPLOSION

e Solution: dependable system architecture
computer level redundancy
software + hardware

« Hardware fault detection techniques can be adopted to software,
especially in parallel/distributed environments:
+ independence of the checker and checks assured
- communication bandwidth
- error latency — fail safety not assured

The perfectly designed chaos Summary 13

© sy \Dad arci sl ma

January 27, 1997 INFOGEM Conference A. Pataricza

Software solution: Hierarchy of checks/strategies

» Algorithm based fault tolerance:
problem related additional information
- credibility checks (limit, simplified model based check)
- inverse calculations
hard to implement as a uniform mechanism,
only as a problem dependent measure
+ to a limited extent human errors (input data) can be checked

» Syntax based checks - compile-time structure needed:
strict type, range checks
interface checks
restricted call structure (OO?)
predictable task sequence (CSP-like?)

* Checkpoints, rollback recovery:
problems in reactive systems

The perfectly designed chaos Software solution: Hierarchy of checks/strategies 14

page 8 January 27, 1997

Andras Pataricza Managing Software-Quality Engineering Success

January 27, 1997 INFOGEM Conference A. Pataricza

* Redundant data structures:
double linking of lists
checksum-like protection of operations and data structures
(“total” in financial tables, parity-like protected matrix operations)

* Fault tolerant elementary operations:
atomic transaction processing
fault tolerant commit protocols

» Uniform interface: exception handling

* Validation:
huge cardinality of the candidate faults —> statistical methods
simulated fault injection (radiation, bus signal or software)
no validated fault model on the effect of the transient faults

The perfectly designed chaos Software solution: Hierarchy of checks/strategies 15

January 27, 1997 INFOGEM Conference A. Pataricza

Open problems
* Predictable dependability requires (nearly) deterministic control flow

* Hard to solve problems:
- dependable real-time systems (responsive systems)
- distributed, reactive applications

* Implementation techniques
- performance <> determinism (load depending task migration)
- run-time determined control flow (pointer programming)
- self-modification (LISP)

» Checking of the completeness of the checks and reactions
- do all failures of every volatile operations have an exception handler?

* Human intelligence/unintelligence
- security
- operator errors

The perfectly designed chaos Open problems 16

January 27, 1997 page 9

Managing Software-Quality Engineering Success Andras Pataricza

January 27, 1997 INFOGEM Conference A. Pataricza

CAD, CASE and all other CA

Basic idea:
any formal method can be used for dependability modelling, if
a/ the rough structure remains unaltered
b/ the description of the elements is extended by

* Jocal effects of faults

e effects of erroneous input data on the state and output of the elements

Typical formalisms used in CASE/ HW-SW Co-Design
» Data-flow notation (activity charts)
» Finite state machine (state diagrams / statecharts)

¢ Function-structure correlation
CASE: Classes, inheritance
HW Block diagram

The perfectly designed chaos CAD, CASE and all other CA 17
January 27, 1997 INFOGEM Conference A. Pataricza
Example: Data-flow notation
Faulty
Fault-
free THIS is the complete
- il p
Simple specification
O e -
(o] transformation
——-—..
* Qualitative data classes:
simplest: GOOD/ FAULTY
function: GOOD/ DATA ERROR/CTRL ERROR/
severity of the faults: GOOD/ FAULTY/ CATASTROPHIC
etc.
* Model simplification: non-deterministic behavior

The perfectly designed chaos Example: Data-flow notation 18

page 10 January 27, 1997

Andras Pataricza Managing Software-Quality Engineering Success

January 27, 1997 INFOGEM Conference A. Pataricza

Conclusion:

Quality Control assures, that it works fine, if it works

Dependability assures, that it works not so very fine, but a little bit
if it does not work

Can we really stop a high-tech car with a defective ABS on the ice???

Let be a depressed schizoid, in order to sleep well!

The perfectly designed chaos Conclusion 19

January 27, 1997 page 11

	The Perfectly Designed Chaos - or�How Can We Stop the Running Amok of an Imperfect Software on a Faulty Hardware
	András Pataricza, Technical University Budapest,�

