
Copyright © J FAC Experience with the
Management of Software Projects,
Heidelberg. FRG. J 986

SOFTWARE DEVELOPMENT: THE STAIRCASE
APPROACH

K. Frühauf and K. J. Jeppesen
Brouni, Boueri & Cie, Baden, Suutzerland

Abstract. Modelling of the software development process for large
software systems provides a means for controlling software projects.
This paper presents a new model the Staircase Approach, which takes
into account the merits. applicability, and limits of the well-known
~aterfall, Evolutionary Development, and Fast Prototyping models. In
a nutshell, this approach utilises the ideas of Evolutionary
Development for system level activities, the principles of the
Waterfall Model for the lower level activities, and is suited
extremely well for practising Fast Prototyping. Experiences gained in
applying it indicate that the Staircase Approach is more suited than
conventional models in achieving the objective of better software
project control.

Keywords. Computer software; software
management; software quality assurance.

engineering; software

I NTRODUCT I ON software product is resold
to a hund red times

ten

Three dominating models, describing the
software development, can be currently
identified. The best known is the
Software Life Cycle or Waterfall Model
(e.g. Boehm, 1981). The work of Belady
and Lehman (1976) on Evolutionary
Software Development started back in the
middle of the seventies. ~e are not
aware of any reports, except Gilb
(1983), about experiences applying their
ideas. In recent years many software
engineers can remember that Rapid or
Fast Prototyping is an efficient way to
check the feasibility of solutions.
Prototyping can support or even replace
the first phases in the Software Life
Cycle, but it can not be used to
describe the entire software development
process. An example of fitting Fast
Prototyping into the Software Life Cycle
can be found in Matsumoto (1986).

The software product - a system
of the BECOS family (Goudie,
Davis, and Spatz 1984) - is
resold, but in relatively small
quantities compared with e.g.
compilers. It must, however,
be adapted every time to the
needs of the actual customer.
Thus it is neither a single
shot "customer tailored" nor a
mass produced (by copying) "off
the shelf" product.

data are
specific

always customer

software is embedded

Even if the algorithms could be
reused without change, the data
- which is considerable for a
power system - are by nature
customer specific. The test on
the actual hardware
configuration and with the
actual customer data requires a
certain amount of time: the
freeze of the software and a
controlled transfer from the
product development to the
project is a necessity.

In order to enable the readers to judge
the applicability of our approach in
their environment, we list he re
preconditions which have had a major
impact on the selection of our approach:

The software product
the del ivery
computer and
equipment.

is part of
comprising
telemetry

delivery times last from 6
36 months

to

The delivery time depends on

115



116

WATERFALL MODEL :
MERITS AND DEFICIENCIES

K. Frühauf and K. J. Jeppesen

the size of the system. The
product release, on which the
delivery is based, must be
known around 6 to 12 months
ahead, at the tendering stage.
With the biggest systems,
customisation is carried out on
more than one release. This
puts some constraints on the
characteristics of the
consecutive releases, e.g.
upwards compatibility.

number of products have already
been developed

Feasible patterns for solutions
are available. The development
of a new product can start with
reusing big lumps of available
software.

requirements are unstable

For products of a certain size
and complexity, neither the
supplier nor the customer
completely understand the
problems of the particular
application and, therefore,
cannot specify exactly all
requirements. The long project
lifetimes - from·the customer's
initial idea until final
acceptance of the system can
last as long as ten years -
accentuate this problem even
more.

Developers want to describe the
development process in terms of its
different phases and tasks. Management
wants to establish a strategy for
product development and delivery
projects, i .e. taking the entire system
and its total lifetime into account. It
is difficult to achieve these two aims
with a single model.

In the following section we discuss how
the Waterfall Model can be used to
describe software development. The
basic principles of the Waterfall Model
- phases and milestones - turn out to be
a kind of "natural law". We will also
demonstrate, however, that the model is
inadequate for establishing a
development strategy on a system level.
The list of objections to the Waterfall
Model provides the justification for the
Staircase Approach.

Staircase Approach takes into account
basic principles of the Waterfall Model,
but avoids its system level
inapplicability by using ideas from the
Evolutionary Software Development
approach. System level is that level of
abstraction, where the internal
technical details are of no relevance.
The main objective is to enable
management to control large software
developments.

As the Waterfall Model is the only
theory which is not applicable "as iso
in our environment, we will consider its
advantages and drawbacks in the
following section.

In the Waterfall Model
development process

the software

is sequential

The development process is
subdivided into logically
sequential phases. They
reflect the natural sequence of
tasks (e.g. specification,
design, coding, test) to
produce an item of software.
This logical sequence is, in
many cases, mapped on a time
scale so that it leads to a
strict, chronological sequence
of these tasks.

i s iterative

Mistakes detected in later
phases reinitiate the process
at some earlier phase. This
iteration attempts to cover the
fact that a task, e.g. design,
is not finished "for ever" at a
certain milestone. The
co n s-equ e n c e isthat all phases
are finished only when the last
milestone is reached.

F i g • Waterfall, by M.C. Escher
(lithograph, 1961).



The Staircase Approach

This contradiction - strictly sequential
phases vs. iterations - is one of the
reasons for the difficulties regarding
software projects. Another reason is
the confusion caused by the often
neglected fact that the objects of the
tasks in the different phases are not
identical (e.g. specification of the
system, design of subsystems, coding and
testing of different modules).

While we can identify a single task, for
example, "system specification", we have
to cope with a number of "subsystem
design" and even a larger number of
"module coding" tasks. To force, e.g.
that the coding of all modules be in one
time slot (phase) of a large project,
would be from a managerial (e.g.
resource demand) and technical point of
view (e.g. kernel facilities needed
first to ease test of applications),
often foolish.
Therefore, we have refined the
interpretation of a phase in the
Waterfall Model. Example of our
interpretation for, e.g. coding: "A
module can only be coded when the
enclosing subsystem is designed but
irrespective of whether the other
subsystems are designed or not" instead
of the usual "all design must be done
before coding". For this
interpretation, we use the term
activity, e.g. module coding activity.
By this interpretaion we are free to
assign these activities to the adequate
time slots in the project, i .e. to our
phases.

The phases thus serve a well defined
managerial purpose. Strictly sequential
phases, delimited by milestones, are a
tool for management in budget allocation
and progress control. To enable a
definitive closing of phases, activities
on different elements of the software
structure must be each assigned uniquely
to a phase: when all activities
assigned to a particular phase are
finished, the phase itself is finished.
Thus iteration is replaced by
subdivision of tasks into "try it", "do
it", and "modify it" types of activities
and by the assignment of these to
possibly different - phases.

Although the Waterfall Model is not
suited for the overall project, it is
perfectly adequate for the development
of a single function or block of related
functions. It describes all necessary
activities for development of a software
item by a limited number of people.
Lower level management has the means to:

control the
individual
status of
vi s ib le ,

progress of
groups since

activities

the
the
i s

assign the different activities
(e.g. specification, design,
coding) in certain areas (e.g.
human-computer interaction,
telemetry) to different groups
in the organisation based on

their skills
availability,

and resource

continuously improve effort
estimates as every current
activity completely defines the
following activity, including
estimates.

As soon as the work-breakdown results in
elements requiring less than three
person-years effort, the Waterfall Model
is the way to run the development.

Our concern is for software products of
a much bigger size and thus of a higher
complexity, where activities must be
carried out by different groups. Here,
the Waterfall Model does not adequately
describe the development process. Its
application to large projects could be
even dangerous. One of the dangers is
that large amounts of effort might be
put into the first phases with no
feedback on usabi lity. Additionally,
the tendency for "overperfecting", e.g.
the design, without real progress on the
project, could result. Specification is
another example: engineers can always
argue that having an unsound
specification bears a very high risk for
the project. The manager knows that and
has therefore no weapons to fight this
argument. Project termination could
remain as the only way to es cape from
the endless loop of refining the
specification.

Another danger of the stringent
application of the Waterfall Model to
the overall project is the frustration
of the developers. It might be very
demotivating to see the product for
years onLy on paper, but not "alive".
The deveLopers could start to doubt
whether it wiLL ever work.

THE STAIRCASE APPROACH

Definitions

The above discussion indicated that we
have specific interpretation for some
widely used terms. We summarise here
our definition of the terms necessary
for the understanding of the further
sections of the paper.

Project. The planned pattern of all
actions necessary to produce a software
system.

Phase. Aperiod of time within which
certain results - a defined milestone -
must be achieved. The chosen phase name
is, usuaLLy, the name of the dominant
activity in that period. Note the phase
definition is in terms of time.

Mi lestone.
ex istence
software
approval.

Point in time defined by the
of the predefined set of
items, including their

117



118 K. Frühauf aud K. J. Jeppesen

Activity. Work unit carried out on an
element of the system structure at a
certain level, e.g. system
specification, subsystem design, module
coding. Note that this definition is
actually a type definition: module A
coding and module B coding are different
activities of the same type (module
coding). An activity must be uniquely
assigned to a phase.

Product. The result of a software
development project, having a specific
set of identified constituents, and
having, at each stage of development, a
defined functionality.

Release. The software items constitute a
predefined functionality of the product
being developed.

Variant. A variant is the basis for
operational software. lt is a subset of
arelease tailored to the needs of a
particular user and supplemented by the
static data of the process to be
controlled. A variant may include
software items developed for customer
specific requirements.

Objectives

The objectives
Approach were:

fo r the Stai rcase

Define the development in
stages so that the product can
be, at every stage, described
and marketed as a complete
product.

Provide a framework for the
system level activities in
addition to the low-level
activities according to the
Waterfall Model.

Enable a bringing up
version of the
quickly as possible
to:

an initial
system as

in order

prove the
the idea,

feasibility of

demonstrate the system to
prospective customers,

expose the system
market for early
on the commercial
the product,

to the
feedback

value of

provide motivation to
developers.

Establish regularly running
vers ions of the system to

allow management
development on
l ev e l ,

to control
a system

make sure that the system
is in a consistent state,

allow quality and
functionality to be
regularly verified.

Elements of the Staircase Approach

The Staircase Approach
main elements (see Fig.

threecomprises
2) :

1. Release concept

Step-by-step enhancement of the
software product reaching, at
regular intervals "another
floor with doors to the
prospective customers", i.e.
releases as basis for variants

hence the name "Staircase
Approach".

2. Release development

with assigned
and defined

The schedule is
the release period.

Four phases
a c t i v i t i e s
milestones.
dictated by

3. Customisation in variants

Six phases with defined
milestones requiring customer
approval. Product tailoring to
the customer requirements does
not allow as high a
standardisation of activity
assignments as does release
development.

Release Development

The heart of the Staircase Approach is
the development of the system in a
number of regularly issued releases. A
release is defined by a set of
functional and quality requirements.
The frequency of releases depends on the
size of the product and on the number of
persons involved in the development.
For power system control applications
the period shall be between four and
twelve months. The development of every
release can be considered as aseparate
project composed of the following
phases:

Release Planning

Specification of requirements,
overall design, cost
estimation, personpower
planning, and feasibility
studies (including fast
prototyping) are the main
activities in this phase.
Sales of variants based on a
given release will be launched
only after this phase is
finished. The milestone is



The Staircase Approach

PRO~ECT: CUSTOMISATION VARIANT x[i]
Tancerlng

;)\
Realisation

OEVELOPMENT:

PROOUKT
RELEASE 1

AII80mbly "foet

,1\
Werranty

Plannlng

Implementetlon

Packeglng

Malntcnance

______________ :>~tlml!l

F i g. 2 The Staircase Approach.

Hsales launchingH and is
achieved when the entire system
level documentation of the
release is available and
approved.

phase. The configuration
provides a comprehensive list
of items forming the release
(comprehensive means that data
and documents are included).
The formal acceptance test,
carried out by an independent
group, confirms the consistency
of the items and the
performance according to the
specified requirements. The
project and product audit
provide additional confidence
for the quality of the
development process and of the
product.

Release Implementation

The main activities are the
detailed specification of
functions and design of the
modifications to the current
release (including reviews),
test design, coding and test of
the modifications, integration
of the modifications and system
t es t.

Release Maintenance
The main difficulty in this
phase is the work break-down.
More than one function can
require a modification to a
particular module. The work
must thus be sequenced either
function-by- function (so that
at no point in time do two
developers have to modify the
same module) or
module-by-module (so that all
modifications of a particuLar
module for all the functions
are done as a work unit). The
former is much easier to manage
but the danger of Hslipping
into corrupted designH must be
recognised and avoided.

One of the merits of the
approach is that this phase
comprises only corrective
maintenance. All required
enhancements must be considered
in release planning. Providing
that development is directed
toward upwards compatibility
and that site updates are
enforced, the release
maintenance can be abandoned as
soon as the next release is
available. This requires some
of the errors to be corrected
twice: First in the release it
was reported for and
additionally in the subsequent
release.

Release Packaging

Configuration of the release,
formal acceptance test, project
audit, and product audit are
the dominant activities in this

The concern of all activities in the
release planning and packaging phases is
the entire system. Only a small team is
involved at these stages.

119



120 K. Frühauf and K. J. Jeppesen

During release implementation, the
functions are the main concern. Their
implementation can strictly follow the
"natural law" which is the middle part
of the Waterfall Model: Detailed
Specification, Detailed Design, Coding
and Unit Test, Integration. The size of
the team depends on the functionality
increment and can vary from release to
release. Many developers or even groups
of deveLopers can impLement functions in
paraLLeL, each working strictly
according to the "natural law".

is the contract signature by
both the supplier and customer.

System Specification

ReLease maintenance is concerned with
the errors reported by the users of the
release. The entire system wilL be
brought to a consistent state in the
form of release upgrade with some of the
errors removed. Between two releases up
to four upgrades couLd be provided for
the users.

All uncertainties between the
supplier and customer which the
contract negotiations did not
take into account must be
settLed in this phase. The
contract must be reviewed and
the requirement specifications
refined to the necessary Level
of detaiL. That LeveL is
reached when the hardware items
can be ordered and the variant
can be taiLored. The customer
shares here the work and
responsibility: He must
provide aLL data correctly
and on time - describing his
application process.

Customisation in Variants Providing verification
procedures for factory
acceptance tests at this stage
and their approvaL by the
customer will help a great deaL
in clarifying requirements.
Because the verification
procedures are the most
user-friendLy description of
the product, their inclusion in
the contract is actuaLLy our
goaL. However, the customers
are not ready yet to accept
this idea.

Product development is directed by the
market or, more precisely, by our
perception of what the market requires
and what the technology provides. In
the delivery projects, i .e. projects
resulting in a variant, the target to
meet is the satisfaction of a particular
customer.

The variant is derived from a specific
product reLease. The customisation is
basicaLLy the specification of the
customer's requirements and the
configuration of the corresponding
release subset supplemented by the
customer specific data. Most of the
customers, at least in our appLication
area, will have requirements not
considered in the planned product
releases. These customer specifics wiLL
be implemented within the framework of
the delivery project and, unfortunately
for the customers, wilL be fully charged
for. The advantage of having standard
requirements <of a given product
reLease) is that their development costs
are shared by all buyers of the product.

The miLestone of this phase is
the approval of the detailed
specification <and, hopefully,
of the verification procedures)
by the customer.

Realisation

Tendering

The product reLease is tailored
and the variant bui lt and
loaded with all data needed to
model the process to be
controlled. If customer
specifics are required, it is
during this phase in which the
required functions are
implemented, i .e. the variant
is supplemented by the customer
specific software items. The
development of these functions
follows exactly the same path
as for release implementation.
The system test is accomplished
according to the verification
procedures prepared for the
factory acceptance test. The
tests should include the user
manuals. The quality assurance
engineer will certify the
achievement of the milestone
"system test passed".

The delivery projects are
chronologically subdivided into the
following phases: tendering, system
specification, realisation, assembly
test, installation, warranty, and
maintenance. The following sections
describe which activities are carried
out in these phases, with special
emphasis on what is available with each
particular milestone. Note that the
concern of all activities is the
variant.

The most important activity is
to find the best matching
product release and to identify
the deviations between the
expectations of the prospective
customer and the requirement
specifications of the chosen
release. These deviations are
the main topics of the
contractual negotiations. The
milestone delimiting this phase

Assembly test

The independently tested
software system is brought to
the independently tested actual
hardware. The purpose of the
phase is to test, prior
delivery, the hardware-software
combination in supplier's test



The Staircase Approach

field. Corrective maintenance
will be made. Latest by the
start of the factory acceptance
test all user manuals must be
ready. The succesful
completion of the factory
acceptance test will be
certified by the customer and
the variant version archived.
The approval of the
verification procedures for the
customer site acceptance tests
at this stage is highly
recommended.

Installation

The hardware and software are
installed and tested at the
customer site. Software
problems are either reported
back home or corrected on site.
The valid version of the
variant is always the one on
the customer site. The
milestone is the successful
site acceptance test certified
by the customer. The software
engineer must not forget to
take home the last version for
archiving. This is a
prerequisite for any chance to
reproduce and correct errors
reported by the end user.

Warranty

Corrective maintenance based on
problem reports from end users.
The end of the phase is
certified by the customer with
the certificate of final
acceptance. The complete
version of the variant will be
archived as well as the project
folder containing the history
of the project. A nice project
leader will even write a
project closing report with
some figures and remarks useful
for his or her colleagues.

Maintenance

Maintenance as generally
understood. Bigger
enhancements will be carried
out as a new project or, if we
are lucky, the next product
release will do it. The luck
is dependent on the
compatibility of the customer
specifics in the variant with
the new release. Every
maintenance lump is finished
with the archiving of the new
version of the variant and of
the updated project folder.

EXPERIENCE GAINEO

The main advantage in applying the
Staircase Approach is the frequency of
"deliveries" with stringent control of

quality, value, cost, and schedule. The
choice of the release period is a
trade-off between the cost of release
packaging and the prospective benefit of
risk reduction. It is mainly dependent
on the product size. The best approach
is to limit the fund for arelease and
insist on provision of arelease
specification which can be implemented
with that money.

The time between initial tendering and
order is, in our business, roughly
twelve months. Assuming arelease
period of six months, management must
always have at hand plans for at least
two releases ahead.

The application of the Staircase
Approach to a two hund red person-years
development effort of a product with the
life-time of ten years results in ten to
twenty small and thus manageable
projects. With arelease period of six
months, they will last - from start of
the release planning until the end of
release maintenance - at most two years
and consume ten to twenty person-years
development effort. Note that the main
cause of the two years time interval is
the long tendering phase. The two
phases of realisation and packaging
together last the release period (e.g.
six months); the maintenance phase lasts
an equal period of time. Half of the
release lifetime is used for the
planning phase - enough room to
extensively practise Fast Prototyping.

Fast Prototyping is used for three
purposes. First, it is used for
feasibility studies whi le specifying
releases. The simulation of interfaces
to existing software packages is another
purpose. Before deciding to incorporate
an application software package, the
interface is prototyped. In addition to
the feasibility demonstration, the known
prototyping effort enables a more
accurate cost estimate for the actual
incorporation. Finally, the early
presentability of the future product
"surface" provides a higher confidence
level by management as well as by the
prospective customers. Both management
and prospective customers can see what
they wi~l get for their money.

The release implementation, packaging,
and maintenance phases are at any time
in progress tor a single release.
Necessitated by its length, release
planning of two consecutive releases
will overlap. This enables high
flexibility in allocating requirements
to the releases depending on the current
set of variant tenders and orders. A
strong discipline in documenting and
communicating the decisions within the
team is a necessity, otherwise confusion
about the final appearance of the
concerned releases is the unavoidable
consequence.

We encountered
when applying
developers focus
release. They
that funding may

an interesting problem
this approach. The
only on the next

are naturally concerned
dry up, and thus there

121



122 K. Frunauf and K. J. Jeppesen

a standardwiLL be no money for cLimbing the next
steps on the staircase. They have
difficuLty recognising that the system
deveLopment is not according to the
WaterfaLL ModeL (which appears to be a
more finite process). The consequence
is that they tend to put the fuLL
functionaLity into the next reLease,
aLthough onLy part of the functionaLity
was specified for. Providing the
deadLines are met and the costs does not
exceed the budget. this can Lead to
more-than-mature reLeases. The manager
must, thus, carefuLLy untangLe the
reasons of deadLine slippage.

F ig. 3 ReLativity, by M.C. Escher
(Lithograh, 1953).

With the product reLeases pLanned
sufficientLy ahead it is much easier to
negotiate with a prospective customer:
onLy the requirements not met by the
corresponding reLease must be
negotiated. The deLivery time of the
best-matching reLease couLd be too Late
for the purchaser. Assuming upwards
compatibiLity of the releases, this
problem can be resolved by phased
delivery: the customer will obtain
successive releases until his ultimate
requirements are satisfied. The crucial
matter is to have a well-designed
product so that upwards compatibility
can be guaranteed. Everyone who has
been told by an operating system
supplier that the releases of his
operating system are completely upwards
compatible wiLL soon realise that for
process control applications this is a
very difficult task !

Delivery time for a variant can be
shortened significantly. If the variant
does not contain any customer specifics
the delivery time is dictated by the
hardware delivery. Buying release
functionality thus provides the customer
with the advantage of lower price and
shorter deLivery. An additional
advantage is provided by having a larger
number of end users: all of them will
contribute to error discovery.
Remaining errors in customer specifics
can, by nature, occur only on one site.
In summary, the customer has less risk

in purchasing
release.

product

In Paige (1985), a distinction is made
between software development for novel
and sustaining products. The
application of the Staircase Approach
for development of sustaining products
is straight forward. They have stable
requirements so it is easy to reuse
available solutions: the step to the
first release, which should already be
of vaLue to end users, can be made
within the expected time frame.

It is much more difficult to apply the
approach for the development of novel
products. The critical matter is the
size of the product. The system
architect's challenge is to identify the
kernel part of the system which then
becomes release one. This first release
wiLL usually take more than the intended
release period, but it should not take
longer than two periods. The second
release will most likely be the first
release of any vaLue to an end user.

In both cases, the consistent
application of the Staircase Approach
encourages the reuse of software. With
strictly limited funds allocated and the
request for releases usable by end users
the "must be invented here" syndrome can
be very effectively fought.

CONCLUSIONS

The Staircase Approach is the synthesis
of the weLL-known software development
models. It is an attempt to use their
merits and avoid their drawbacks. The
evolution of a product is forced into
regular, timely steps, and the
developers are forced to let the product
"out of their hands" for customisation.
This. frequent exposure of their results
to other internal groups and to
customers stimulates "craftsman pride"
of the developers. The successful
passing of all acceptance tests and
audits provides job satisfaction and
continued motivation.

But it is not easy to convince
developers that every six months a
complete product must be turned out
without aLL their briLLiant ideas being
impLemented. It i s even more difficult
to convince the salesmen that selling
variants strictly adhering to the
release functionality will create
customer satisfaction and tip the
balance sheet in their favour.

Customers in the area of power system
control will soon accept this new
situation. They will observe happy
neighbours operating reliable systems
and having forgotten all their extra
wishes - partly because the next release
will include their w;shes for the price
of a software update contract, and
partly because they have learned, by
using the system, that the benefit could



The Staircase Approach 123

never outweigh
extras.

the cost of t h ei r

The prerequisite for the approach is a
system architecture designed for easy
extensions and a provision of all
essential functions in the initial
release. Thus, knowledge of the market
and software engineering know-how are
necessary.

ACKNOWLEOGHENT
The authors would like to express their
appreciation to F. Merola for improving
the language of the paper.

REFERENCES
Belady L.A., Lehman, M.M. (1976). A
Model of Large Program Development. IBM
Systems Journal, No. 3, 1976, ~
225-252.

Boehm B.W. (1981). Software
Engineering Economics. Prentice Hall,
1981.

Frahauf K., and Sandmayr H. (1983).
Quality of the Software Development
Process. IFAC Safecomp 83, Cambridge
University-press 1983, pp.--145-152.

Gilb T.
Technoscopes.
manuscript, 1983.

(1983). Management
Unpublished book

Locher J.L. ed. (1971).De werelden van
MeulenhOff

1971. Source
lithographs by

M. C. Escher.
International Amsterdam,
for photocopies of the
M.C. Escher.

Matsumoto Y. (1986). Requirements
Engineering and Software Development :
A Study Toward Another Life Cycle Model
Proceedings of the Symposium Computer
Systems for -Process Control. Plenum
Publishing-corporation, 1986.

Paige M.P. (1985).
Assurance Strategy.
Eighteenth Asilomar
Circuits, Systems and
Computer Society. 1985:

On Software Quality
Conference Record
Conference-----o--n
Compute rs. IEU

pp. 257-261.


